Neurology India
Open access journal indexed with Index Medicus
  Users online: 586  
 Home | Login 
  About Current Issue Archive Ahead of print Search Instructions Online Submission Subscribe Etcetera Contact  
  Navigate Here 
 Search
 
  
 Resource Links
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Article in PDF (1,652 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this Article
   Abstract
   Materials and Me...
  Results
  Discussion
  Conclusion
   References
   Article Figures
   Article Tables

 Article Access Statistics
    Viewed419    
    Printed9    
    Emailed0    
    PDF Downloaded14    
    Comments [Add]    

Recommend this journal

 


 
Table of Contents    
NI FEATURE: CENTS (CONCEPTS, ERGONOMICS, NUANCES, THERBLIGS, SHORTCOMINGS) - ORIGINAL ARTICLE
Year : 2017  |  Volume : 65  |  Issue : 1  |  Page : 129-133

A novel nasoseptal flap harvesting technique in revision expanded endoscopic transsphenoidal approaches


1 Department of Neurosurgery, Christian Medical College, Vellore, Tamil Nadu, India
2 Department of Otolaryngology, Christian Medical College, Vellore, Tamil Nadu, India

Date of Web Publication12-Jan-2017

Correspondence Address:
Regi Thomas
Department of Otolaryngology, Christian Medical College, Vellore, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0028-3886.198214

Rights and Permissions

  Abstract 

Objectives: To describe the technique of harvesting the nasoseptal flap (NSF) in revision-expanded endoscopic approaches (EEA).
Study Design: We retrospectively analyzed four cases of endoscopic skull base reconstruction (ESBR) following revision EEA done for pituitary adenoma recurrence. The presence of an intact mucoperiosteum between the nasal septum and the roof of the choana as judged on a preoperative endoscopic and radiological assessment was considered to be sufficient for the presence of a viable pedicle. By strategic placement of the incisions, the entire bilateral posterior nasal septal mucoperiosteum was raised in the NSF containing the remnant vascular pedicle. ESBR was performed with multilayer grafting of the dural defect, and the NSF was placed onto the bony margins of the defect.
Results: All patients had successful skull base reconstruction with the NSF raised by this technique as none of them developed postoperative cerebrospinal fluid leak.
Conclusion: Though the number of patients in this study is small, we would like to present the concept of harvesting the NSF in revision surgery, wherein neither measuring the surface area of the pedicle nor the acoustic Doppler assessment of the pedicle is required.


Keywords: Cerebrospinal fluid leak, nasal septum, pituitary adenoma, sphenoid sinus, sphenopalatine artery
Key Messages:
A novel nasoseptal flap is described in which the entire bilateral posterior nasal septal mucoperiosteum may be raised containing the remnant vascular pedicle. This flap is especially useful in the absence of prior rescue incision placement. It is also useful when there is no prior nasoseptal flap for takedown and repositioning, especially in the case of revision endoscopic transsphenoidal surgery.


How to cite this article:
Gandham EJ, Sundaresan R, Thomas R, Chacko AG. A novel nasoseptal flap harvesting technique in revision expanded endoscopic transsphenoidal approaches. Neurol India 2017;65:129-33

How to cite this URL:
Gandham EJ, Sundaresan R, Thomas R, Chacko AG. A novel nasoseptal flap harvesting technique in revision expanded endoscopic transsphenoidal approaches. Neurol India [serial online] 2017 [cited 2017 Mar 30];65:129-33. Available from: http://www.neurologyindia.com/text.asp?2017/65/1/129/198214


The introduction of the pedicled nasoseptal flap (NSF) was the most significant step that reduced the incidence of postoperative cerebrospinal fluid (CSF) leak from 20% to <5% following an expanded endoscopic approach (EEA) to the anterior skull base.[1],[2],[3] However, in patients previously operated transnasally, defects in the septum and extensive fibrosis with adhesions might preclude the use of such flaps in revision cases. We present our experience in raising a flap based on the intact left sphenopalatine artery for successful endoscopic skull base reconstruction (ESBR), despite the prior posterior septectomy and transsphenoidal surgery.


  Materials and Methods Top


Four patients with recurrent pituitary adenomas underwent revision EEA. The preoperative rigid nasal endoscopy, magnetic resonance imaging (MRI), and computed tomography (CT) scans were used to assess the status of the sphenopalatine pedicle, which was found to be intact on the left side [Figure 1]. All patients underwent an endoscopic transsphenoidal surgery via a binostril approach, and the CSF leak repair during the primary surgery was done using a fat graft. The NSF was not used in the primary surgery. During the revision surgery, the NSF was raised on the left side at the beginning of the surgery in all patients.
Figure 1: Preoperative CT scan image. White arrow – Presence of an intact bony sphenoid sinus floor edge on the left side with absence of an intact bony sphenoid sinus floor edge on the right side

Click here to view


Following tumor excision, the dural defect was repaired with fat and fascia lata as inlay and onlay placements, respectively. The NSF was placed over the onlay fascia lata onto the bony edges of the defect. Surgicel, tissue glue, and gelfoam were placed sequentially over the repair site and bilateral merocel packs were kept for 5 days. The patient was kept on bedrest with a lumbar subarachnoid drain for 5 days. We endoscopically cleaned the nose twice in the first two weeks, following which the patients were asked to report for follow-up at 3 months.

Nasoseptal flap harvesting technique

The inferior incision is placed along the roof of the left choanae, comes on to the posterior half of the septum, drops down onto the lower edge of the nasal septum and comes forward along the floor of the nose, upto the free border of the septal cartilage [Figure 2].
Figure 2: Incisions. Black line – Lower incision. Red line – Upper incision. Red dotted line – Portion of the upper incision on the posterior right nasal septum. Green line – Lower border of the septal perforation

Click here to view


The superior incision is the critical step wherein the strategic placement of the incision is done to preserve the left sphenopalatine pedicle. This incision can be considered in two parts – posterior half and the anterior half.

The posterior half starts on the left side along the sphenoid sinus floor edge, as high as possible, and connects with the previous sphenoidotomy opening at its upper margin [Figure 2]. Thereafter, the incision crosses the midline onto the right side of the previous sphenoidotomy opening and comes down, transecting the right sphenopalatine pedicle onto the roof of the right choana [Figure 2]. The incision then comes forward onto the posterior part of the right nasal septum and goes inferiorly to reach the floor of the nose on the right side [Figure 2]. The incision is then extended anteriorly along the floor of the right nose and then ascends upwards to reach the anterior edge of the septal defect caused by the primary surgery [[Figure 2] and Video 1].



The anterior half of the superior incision goes up along the anterior edge of the septal defect as high as possible [Figure 2] and [Figure 3], and crosses over to the left side and proceeds forward anteriorly along the upper portion of the nasal septum on the left side [Figure 2] and [Figure 3], turning down on the free border of the septal cartilage to join the inferior incision [[Figure 2], [Figure 3] and Video 1]. The flap is harvested after placement of these incisions and placed onto the repair site [Figure 4].
Figure 3: Broad posterior area of the NSF. Black line – Lower incision. Red line – Upper incision. Green dotted line – Lower border of the septal perforation. Red star – Posterior right nasal septum in continuity with posterior left nasal septum. Blue star – Posterior left nasal septum

Click here to view
Figure 4: Broad NSF. Black line – Lower incision. Red line – Upper incision

Click here to view


In comparison with the standard Hadad flap, this technique differs only in the posterior half of the superior incision [Table 1]. It is preferable to place the incisions in the region of the choanae with a surgical scalpel rather than with cautery to prevent the chances of thermal injury to the vascular pedicle.
Table 1: Comparison of NSF with revision NSF

Click here to view


The lower portion of the right posterior nasal septum is raised [Figure 5] and transposed onto the left side, which is in continuity with the lower portion of the posterior left nasal septum [Figure 3] and [Figure 6]. Thus, the right posterior nasal septal mucosa becomes the upper portion of the posterior half of the NSF [Figure 6], and the resultant NSF has full thickness of bilateral posterior nasal mucosa incorporated in it. The entire procedure has been summarized in the Video 1.
Figure 5: Right posterior septal mucosa harvesting. Black star – Right posterior septal mucosa being raised

Click here to view
Figure 6: Broad posterior area of the NSF with bilateral posterior septal mucosa. White star – Posterior right nasal septal mucosa in continuity with opposite side mucosa. Black star – Posterior left nasal septal mucosalaterally

Click here to view



  Results Top


In all the four cases [Table 2], there was continuity of mucosa from posterior nasal septum over the intact edge of the left sphenoid sinus floor, and it was noted to be extending laterally over the roof of the choana [Figure 1]. Therefore, the flap was raised on the left side, with the preservation of the left sphenopalatine pedicle because the area between the left choanal roof and left sphenoid sinus opening edge was kept intact. The NSF was used for ESBR in all patients and postoperative MRI showed contrast uptake in the NSF, indicating adequate perfusion within the flap [Figure 7]. This is significant because it confirms the presence of a functioning vascular pedicle within the NSF.
Table 2: Clinical details

Click here to view
Figure 7: Postoperative contrast MRI sagittal scan. Red interrupted line – NSF at the repair site with contrast enhancement, indicating adequate vascularity within the flap

Click here to view


All patients had successful ESBR in this series because none of them developed postoperative CSF leak. Nasal block due to crusts was noted postoperatively, which was treated with endoscopic cleaning and saline nasal spray. Superficial fungal colonization was noted on the crust over the NSF in one patient, which was removed. The NSF was noted to be completely integrated with the rest of the mucosa [Figure 8] in another patient who reported for post operative review after 6 months.
Figure 8: Endoscopic view at 6 month postoperative status. White star – NSF that has integrated with the rest of the mucosa

Click here to view



  Discussion Top


The NSF [1],[2],[3],[4],[5],[6] remains the vascular flap of choice in ESBR. However, the presence of a septal perforation, bilateral large sphenoidotomies, and compromised sphenopalatine pedicles due to cauterization, postoperative scarring, and mucosal adhesions can make the raising of the NSF challenging in revision cases. Patel et al.,[7] described the placement of other vascular flaps such as the inferior turbinate flap, middle turbinate flap, lateral nasal wall flap, temporoparietel flap, pericranial flap, buccinator flap, palatal flap, and occipital flap as a solution for this scenario. Even though these flaps give goods results, whenever possible, the NSF should be raised in view of its vascularity, ability to cover a large area of the skull base, and the excellent arc of rotation, which make the placement of the flap easier.

Another clinical scenario where NSF becomes possible in revision surgery is by using the rescue flap technique [8] during the primary surgery. The cases we have selected underwent the primary surgery without the placement of the rescue incision, and therefore, our technique enables the surgeon to raise the NSF in the absence of rescue incision. As described by others,[9] we have successfully taken down previously applied NSF in revision surgery in a few cases and replaced them successfully, with good results.

Brunworth et al.,[10] placed incisions inferior to the septal perforation and on the nasal floor and have raised the NSF in revision cases. In their cases, the mean width of the pedicle between the sphenoidotomy and roof of choana was 1.43 cm, and the mean distance between the inferior edge of the septal perforation and nasal floor was 1.07 cm. The minimum dimensions required for the pedicle to be viable is not yet determined; however, they recommend the endoscopic assessment of the mucoperiosteal tissue between the anterior septum and the sphenoid rostrum to check the viability of the NSF. Audible signals on acoustic Doppler sonography noted on the flap pedicle were considered to be a good indicator of vascular viability prior to harvesting of the flap in revision cases.[11]

Contrary to Brunworth's technique, we prefer not to place the superior incision near the septal perforation for fear of injuring the remaining vascular pedicle. Instead, the superior incision starts on the left side of the previous sphenoidotomy, crosses the midline onto the right side, and then courses along the right side of the septum. The inclusion of bilateral full thickness posterior septal mucosa in the NSF [Figure 6] minimizes the risk of injury to the remnant vascular pedicle as the incisions are placed away from the potential area of the vascular pedicle. The net result is a flap with a larger surface area posteriorly, which ensures good vascularity. Crusting at the donor area of the septum can be reduced by placing free mucosal grafts from the middle turbinate [12] should the latter have been removed for better access during the surgery. The reverse flap [13] is not an option in our technique as bilateral posterior nasal septal mucosal tissues are included the NSF.

The presence of an intact mucoperiosteum between the septum and any one of the roofs of the choana, resting on an intact sphenoid sinus floor edge, as judged on an endoscopic and radiological assessment [Figure 1], may be considered as sufficient evidence for the presence of a viable pedicle in the NSF. The serial MRI scans at regular intervals for postoperative follow-up will further confirm the presence of a functioning vascular pedicle within the NSF. The absence of the bony edge of the sphenoid sinus floor [Figure 1] may be considered as a relative contraindication for this technique because the raising and subsequent rotation of the NSF become difficult in this scenario.

Advantages

This is a useful technique for the reconstruction of the sellar defect in revision surgery where a vascular flap is required. While it is true that closure of the CSF leak may be done with grafts, the vascular flap is known to give better results. In a revision case, one needs to avoid CSF leak recurrence, and hence, it would be prudent to use a vascular flap for the skull base defect repair. Another advantage of our technique is that it offers the option of harvesting the NSF in the absence of prior rescue incision placement and when there is no prior NSF for takedown and repositioning.

The broad-based pedicle with bilateral full thickness posterior nasal septal mucosa in it forms the basis for assuring the adequacy of the remnant vascular pedicle in the NSF raised in this technique. Thus, the need to measure the surface area of the pedicle [10] and the usage of acoustic Doppler assessment of the pedicle [11] are avoided in this technique.

Disadvantages

This technique has the limitation of being possible where only posterior septostomy has been done previously and one sphenopalatine pedicle is noted to be intact on the endoscopic and radiological assessment. Another disadvantage is that it involves bilateral flap elevation, even though this is limited to the posterior part of the septum. This needs extra time and careful flap elevation to avoid flap tear because the tissues may be adherent due to posterior operative scarring. In comparison with the other intranasal vascular flaps, which are the inferior turbinate flap, middle turbinate flap, and lateral nasal wall flap [Table 3], we still feel the usage of the revision NSF is the better option. While the technique does not individually identify the vascular pedicle with the Doppler ultrasound, the postoperative scans showed significant vascularity in this NSF, which had resulted in the good outcome achieved [Figure 7] and [Figure 8].
Table 3: Comparison of intranasal vascular flaps with revision NSF

Click here to view



  Conclusion Top


In revision EEA, a vascular flap is desirable to get better ESBR results. Though the number of cases in this study is small, this paper highlights a new operative technique, wherein one can harvest the NSF in revision cases. The presence of at least one intact sphenopalatine pedicle, as noted in the endoscopic and radiological assessment, is necessary for this technique. The need for measuring the surface area of the pedicle and the acoustic Doppler assessment of the pedicle are avoided in this method.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
  References Top

1.
Hadad G, Bassagasteguy L, Carrau RL, Mataza JC, Kassam A, Snyderman CH, et al. A novel reconstructive technique after endoscopic expanded endonasal approaches: Vascular pedicle nasoseptal flap. Laryngoscope 2006;116:1882-6.  Back to cited text no. 1
    
2.
Kassam AB, Thomas A, Carrau RL, Snyderman CH, Vescan A, Prevedello D, et al. Endoscopic reconstruction of the cranial base using a pedicled nasoseptal flap. Neurosurgery 2008;63:44-53.  Back to cited text no. 2
    
3.
Kassam AB, Prevedello DM, Carrau RL, Snyderman CH, Thomas A, Gardner P, et al. Endoscopic endonasal skull base surgery: Analysis of complications in the authors' initial 800 patients. J Neurosurg 2011;114:1544-68.  Back to cited text no. 3
    
4.
Sannareddy RR, Rambabu K, Kumar VE, Gnana RB, Ranjan A. Endoscopic management of CSF rhinorrhea. Neurol India 2014;62:532-9.  Back to cited text no. 4
[PUBMED]  Medknow Journal  
5.
Tan SH, Brand Y, Prepageran N, Waran V. Endoscopic transnasal approach to anterior and middle cranial base lesions. Neurol India 2015;63:673-80.  Back to cited text no. 5
[PUBMED]  Medknow Journal  
6.
Sankhla SK, Jayashankar N, Khan GM. Endoscopic endonasal transplanum transtuberculum approach for retrochiasmatic craniopharyngiomas: Operative nuances. Neurol India 2015;63:405-13.  Back to cited text no. 6
[PUBMED]  Medknow Journal  
7.
Patel MR, Taylor RJ, Hackman TG, Germanwala AV, Sasaki-Adams D, Ewend MG, et al. Beyond the nasoseptal flap: Outcomes and pearls with secondary flaps in endoscopic endonasal skull base reconstruction. Laryngoscope 2014;124:846-52.  Back to cited text no. 7
    
8.
Rivera-Serrano CM, Snyderman CH, Gardner P, Prevedello D, Wheless S, Kassam AB, et al. Nasoseptal “rescue” flap: A novel modification of the nasoseptal flap technique for pituitary surgery. Laryngoscope 2011;121:990-3.  Back to cited text no. 8
    
9.
Zanation AM, Carrau RL, Snyderman CH, McKinney KA, Wheless SA, Bhatki AM, et al. Nasoseptal flap takedown and reuse in revision endoscopic skull base reconstruction. Laryngoscope 2011;121:42-6.  Back to cited text no. 9
    
10.
Brunworth J, Lin T, Keschner DB, Garg R, Lee JT. Use of the Hadad-Bassagasteguy flap for repair of recurrent cerebrospinal fluid leak after prior transsphenoidal surgery. Allergy Rhinol 2013;4:155-61.  Back to cited text no. 10
    
11.
Pinheiro-Neto CD, Carrau RL, Prevedello DM, Fernandez-Miranda JC, Snyderman CS, Gardner PA, Kassam AB. Use of acoustic Doppler sonography to ascertain the feasibility of the pedicled nasoseptal flap after prior bilateral sphenoidotomy. Laryngoscope 2010;120:1798-801.  Back to cited text no. 11
    
12.
Kimple AJ, Leight WD, Wheless SA, Zanation AM. Reducing nasal morbidity after skull base reconstruction with the nasoseptal flap: Free middle turbinate mucosal grafts. Laryngoscope 2012;122:1920-4.  Back to cited text no. 12
    
13.
Kasemsiri P, Carrau RL, Otto BA, Tang IP, Prevedello DM, Muto J, et al. Reconstruction of the pedicled nasoseptal flap donor site with a contralateral reverse rotation flap: Technical modifications and outcomes. Laryngoscope 2013;123:2601-4.  Back to cited text no. 13
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6], [Figure 7], [Figure 8]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
Print this article  Email this article
   
Online since 20th March '04
Published by Wolters Kluwer - Medknow